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Abstract

A simple queueing model of busy air-
port departure operations is proposed.
This model is calibrated and validated
using available runway con�guration and
tra�c data. The model is then used
to evaluate preliminary control schemes
aimed at alleviating departure tra�c con-
gestion on the airport surface. The po-
tential impact of these control strategies
on direct operating costs, environmental
costs and overall delay is quanti�ed and
discussed.

Introduction

The continuing growth of air tra�c around the world
is resulting in increasing congestion and delays. Av-
erage block times between busy city pairs in the U.S.
are constantly increasing (for example, the average
gate-to-gate time from Boston airport to Washing-
ton National airport increased by 20% from 1973

to 1994 [1]). The major bottleneck of the U.S. Na-
tional Airspace System (NAS) appears to be the air-
ports. In less than ideal weather conditions, arrival
and departure capacity can be dramatically reduced,
while the airlines are often reluctant or unable to re-
duce the demand by cancelling ights. The reduced
departure capacity can result in very long taxi-out
times at peak hours, as the departing aircraft wait
in a queue before being allowed to take o�. These
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very long taxi-out times not only increase the direct
operating costs for the a�ected ights, but also re-
sult in increased noise and pollutant emissions on
the surface of the airports.

It appears therefore desirable to develop mecha-
nisms to reduce these departure queues. The high
�nancial and political cost of increasing airport ca-
pacity by adding new runways make a strong case
for researching operational improvements to the ex-
isting system. This paper develops and validates an
input-output model of the current departure process
at a busy airport, and uses this model to estimate
the feasibility and the bene�ts of departure control
mechanisms which aim at reducing departure queues
in low capacity conditions.

Many relevant airport models have been devel-
oped and described in the literature. Highly de-
tailed (or \microscopic") models such as SIMMOD

or TAAM [2], reproduce in great detail the layout
of an airport and the operating rules and dynamics
of every gate, taxiway and runway for every aircraft
type. These models are useful to test procedural
changes in routing aircraft on the taxiway system.
The downside of these models is the di�culty and
high-cost of obtaining statistically signi�cant valida-
tion data for all the elements of the airport under
many di�erent con�gurations, and to carry out an
exhaustive validation from these data. It is there-
fore di�cult to obtain from these models quick and
reliable estimates of the bene�ts of new operations
concepts at the scale of the airport over a long period
of time.

Other models, such as the Approximate Network

Delays model (A.N.D.) [2][3], take an aggregate (or
\macroscopic") perspective of capacity and demand
at an airport over the course of the day and provide
estimates of delays. These models allow to study the
propagation of delays at the scale of the NAS, but
their macroscopic view of the airports does not cap-
ture enough details of individual airport operations
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to study taxi-out time reduction schemes.
This paper takes an intermediate modeling ap-

proach, in which input-output models of the airport
terminal, taxiway and runway systems are put to-
gether to obtain a \mesoscopic" airport model. The
airport terminal system and the runway system are
modeled as queueing servers, and a stochastic distri-
bution is derived for the travel time on the taxiway
system from the terminal to the runway queue. This
model captures the departure process in enough de-
tail to estimate the e�ectiveness of departure control
schemes in reducing taxi-out times, while remain-
ing simple enough to allow a rapid calibration and
validation in each runway con�guration. A similar
modeling approach was used by Shumsky to develop
deterministic models which forecast take-o� times of
ights frommajor airports [4][5]. Some of these mod-
els represent the runway system as a queueing server
whose capacity is constant over 10 minute intervals.
In these models, aircraft reach the runway queue at
the end of a nominal travel time on the taxiway sys-
tem. Shumsky also observed a relationship between
air�eld congestion and airport departure rate which
is the basis of a simple departure control strategy
evaluated in this paper. The mesoscopic modeling

approach was also followed by Hebert [6], who devel-
oped a model of the departure process at LaGuardia
airport, based on �ve days of data, to predict depar-
ture delays. In this model, the departure demand
is a non-homogeneous Poisson process, and taxi-out
times are modeled as the sum of a nominal travel
time to the runway queue and a runway service time.
The runway is modeled as a multi-stage Markov pro-
cess in which service completions follow an Erlang-6
distribution. The runway server can also become
absent after a departure, and the absence time dis-
tribution is Erlang-9.
The contributions of the present paper are to pro-

vide a model of an airport departure process that
is thoroughly validated over a year of operational
data and to use this model to quantify the e�ects
of departure process control. This work di�ers from
previous publications by the following characteris-
tics:

� the stochastic model of the airport developed in
this paper accounts for such explanatory vari-
ables as runway con�gurations and airline ter-
minal location.

� in each runway con�guration, the following
model parameters are calibrated using one year
of historical data:

{ distribution of travel time from the termi-
nals to the departure runways

{ departure runway service rate

� in each runway con�guration, the following
model outputs are validated using a di�erent
year of data:

{ distribution of the number of aircraft on
the taxiway system,

{ distributions of taxi-out times in light,
moderate and heavy tra�c conditions

{ distribution of achieved departure rate

� departure control schemes are proposed and
tested on the departure process model. The
reduction of runway queueing times achieved
by these control schemes is translated into re-
ductions in direct operating costs and pollutant
emissions.

� the departure demand used to test the depar-
ture control schemes is taken from historical de-
mand records to accurately represent \schedule
bunching" (e.g. many ights are scheduled at
round times for marketing reasons).

The paper is structured as follows: section 1 intro-
duces the ASQP and PRAS datasets that were used
to validate the model and served as a baseline for the
testing of new departure process control laws. Sec-
tion 2 describes in detail the structure on the model
and the calibration and validation process. Section 3
introduces simple departure process control schemes
and estimates their bene�ts via computer simula-
tions.

1 Data sources

1.1 Airline Service Quality Perfor-
mance (ASQP) database

The Airline Service Quality Performance (ASQP)
data are collected by the Department of Transporta-
tion in order to calculate on-time performance statis-
tics for the 10 main domestic airlines. The data
sets include all the ights own by the following ten
airlines: Alaska, American, America West, Conti-
nental, Delta, Northwest, Southwest, TWA, United,
and U.S. Airways.
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For every ight recorded, the data set contains
operational information such as:

- scheduled and actual gate departure time
- actual take-o� time and landing time
- scheduled and actual gate arrival time.

ASQP data sets are made available to the public
monthly (with a 2 month delay). The monthly �les
include around 400,000 ights. For all airlines ex-
cept Southwest, the \actual" data are automatically
reported through the ACARS (Automatic Commu-
nications And Reporting System) data link system.
For instance, the gate departure time is recorded
when the aircraft brakes are released. These data
were validated in the case of Boston Logan airport [1]

and it was found that although the brake release sig-
nal may di�er from the actual start of the pushback
procedure, recorded times were very close to the ob-
served ones.

Actual take-o� times have been made publicly
available only since January 1995. Taxi-out time
is de�ned in this paper as the time between actual
pushback and take-o�. At Boston Logan airport,
aircraft are constantly under the control of the Air-
port Control Tower between these two events, while,
in the case of some larger hub airports, they are
handed o� from the airline ramp controllers to the
Airport Control Tower at an unknown time. The de-
parture process at an airport such as Boston Logan
is thus expected to display less variability. It is also
important to mention that since a single company,
ARINC, receives these data in real-time, it would
be relatively easy to feed them in real time into a
control facility.

Note that ASQP data only take into account do-
mestic jet operations of the ten major airlines, even
though the turboprop operations of regional airlines
can account for as much as 45% of the landing and
take-o� operations at an airport like Boston Logan.
It is assumed in this paper that a useful model of
the jet aircraft departure process can still be iden-
ti�ed and validated, even though the turboprops do
compete for the same taxiways and runways, espe-
cially in low-capacity con�gurations. However, the
methods presented here could easily be made more
accurate by considering more complete datasets as
they become available. In particular, the uncertain-
ties that were observed throughout the study of the
departure process could be signi�cantly reduced if
more data on turboprop operations were available.

1.2 Preferential Runway Assignment
System (PRAS) database

The mix of runways that are in use at an airport at
any given time is called the \runway con�guration".
Consider for instance the layout of Boston Logan
airport shown on �gure 1.

Figure 1: Layout of Boston Logan International Air-
port

Di�erent departure and arrival runways are used
depending on weather conditions and airspace or
noise abatement procedures:

� In good weather, parallel visual approaches may
be used on runways 4L and 4R to achieve a
high landing rate, while departures take place
on runway 4R and on the intersecting runway 9
to achieve a high departure rate.

� In bad weather, and if the winds are strong,
only one runway (for instance runway 33L) may
be available for takeo� and landings. In such
con�gurations, the departure and landing ca-
pacities of the airport are greatly decreased.

Figure 1 clearly shows that the travel time of a
ight from its gate to the runway threshold will vary
signi�cantly with the position of the gate in the ter-
minal and the position of the runway on the airport
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surface. The runway con�guration is therefore an
important factor in the airport taxiing operations.

Runway con�gurations are chosen by the airport
tower controllers along the course of the day as the
weather evolves. Unfortunately, historical runway
con�guration data are usually recorded only manu-
ally in logbooks and are archived for a limited time.
However, to monitor noise abatement procedures,
the Massachusetts Port Authority has implemented
a Preferential Runway Assignment System (PRAS)
which keeps a digital log of runway con�gurations
within the Boston Logan control tower. This pa-
per will therefore concentrate on Boston Logan air-
port, but the identi�cation and control methods it
introduces could be used at any other airports where
con�guration data would be available.

The PRAS runway con�guration data show that
Boston Logan airport usually operates in high-
capacity con�gurations (for 81% of the departure

operations, the estimated departure capacity[7]) of
the con�guration was above 44 aircraft per hour.
However, the impact of low-capacity con�gurations
is still important since they are associated with de-
parture delays and very long taxi-out times.

2 Model Calibration and Validation

Subsection 2.1 outlines the structure of the model.
Subsection 2.2 explains in detail the calibration pro-
cess of each element of the model, and presents com-
parisons of model outputs with historical data. Sub-
section 2.3 presents model validation results.

2.1 Model Structure

A schematic of the model is shown on �gure 2. The
evolution of the system is modeled over discrete
1-minute time periods: t = 1; 2; :::

Figure 2: Structure of the departure process model
for current operations

De�ne:
R(t) = the number of pushback requests

during period t.
C(t) = the number of aircraft which are

cleared to push back by the airport
tower controllers during time
period t.

P (t) = the number of pushbacks actually
taking place during period t.

N(t) = the number of departing aircraft
on the taxiway system at the
beginning of period t.

A(t) = the number of aircraft reaching
the runway queue during period t.

RQ(t) = the number of aircraft left waiting
in the departure queue on the
taxiways at the end of period t
(note that this queue may in some
cases be spread between several
departure runways)

RC(t) = the capacity of the departure
runways during period t.

T (t) = the number of take-o� during
period t.

The dynamics of the model are as follows:

� Airport Tower control action:

C(t) is determined by the airport tower con-
trollers, and can take into account:

{ the current tra�c conditions on the air-
port surface.

{ the current requests R(t).

{ the forecasts of future departure demand
and capacity.

It is assumed here that aircraft push back imme-
diately after receiving their clearance, so that
P (t) = C(t).

� Travel time:

The arrivals at the runway queue A(t) are re-
lated to pushbacks P (t) through travel times in
the following way:

A(t) =
X
��0

[

P (t��)X
k=1

U(t� �; k; �)] (1)

where U(t��; k; �) is an indicator random vari-
able which takes the value 1 if the k-th airplane
pushing back at time t� � has travel time � to
the runway queue.
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� Runway queue:

The runway queue satis�es the following bal-
ance equation:

RQ(t) = RQ(t� 1) +A(t)� T (t) (2)

� Take-o�:

The achieved take-o� rate is limited by the run-
way capacity RC(t) and by the number RQ(t)
of aircraft available for take-o�:

T (t) = min([RQ(t� 1) +A(t)]; RC(t)) (3)

In addition, the \taxiway loading" parameter
N(t) satis�es the following balance equation:

N(t) = N(t� 1) + P (t� 1)� T (t� 1) (4)

2.2 Model Calibration

The purpose of the calibration is to observe histori-
cal inputs and outputs of the systems and to deduce
\best" values for the model parameters.

2.2.1 Pushback requests and clearances

Figure 2 shows that the input of the model is the
number of pushback requests R(t). However this in-
put is not captured in the ASQP data. Indeed, the
OAG (O�cial Airline Guide) only reects the sched-
uled departure times but does not account for inter-
nal airline events or decisions which could delay the
request for pushback of a ight. In addition, the con-
trol action of the airport tower controllers between
the requests for pushback and the actual pushbacks
are not observed. Consequently, the model identi-
�cation presented in this paper focuses on the mo-
tion phase of the departure process, i.e. the part of
the model between P (t) and T (t). Hence, the in-
put used for model calibration is now the number of
pushbacks P (t) during period t, which is the number
of actual departures recorded during period t in the
ASQP data.

2.2.2 Travel time from terminals to runway

The travel time from the terminals to the runway is
not directly observed in the ASQP data. Indeed the
taxi-out times listed in the ASQP dataset are mea-
sured from pushback to take-o�, and are therefore
the sum of the travel time to the runway queue and
the runway queueing time.

Observations of ASQP taxi-out times at o�-peak
hours, when N(t) is very low, give a good indication
of travel time, since this will usually correspond to
periods with little or no runway queue.
For an aircraft k, de�ne NPB(k) to be the value

of N when aircraft k pushes back (i.e. the number
of departing aircraft on the taxiway system when
aircraft k pushes back). Figure 3 shows a typical
distribution of the ASQP taxi-out times for aircraft
such that NPB � 2. Note that this travel time in-
cludes the take-o� roll and initial climb until the
time when the ACARS take-o� message is sent.
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Figure 3: Selection of a Gaussian distribution to
match a light tra�c taxi-out distribution

The variability in these distributions arises from
several factors:

� variability in the duration of the actual push-
back and the engine start

� variability in turboprop operations taking place
concurrently

� di�erent ights from the same airline can be as-
signed di�erent departure runways or di�erent
taxi routes to the same runway

� taxi speed can be a�ected by visibility and air-
craft types

� aircraft bound to certain destinations receive
their weight and balance numbers later than
others and thus take longer to enter the run-
way queue

In this paper, these factors are modeled as
stochastic uncertainty. Gaussian-like probability
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mass functions are �tted to the observed distribu-
tions to obtain a reasonable model of travel time for
low values of N . For instance, a Gaussian distribu-
tion with mean 9 minutes and standard deviation
2.3 minutes was selected for the airline shown on
�gure 3.
A simple estimate of the taxi-out time is then:

� = �travel + �queue (5)

where:
�travel = travel time following the light tra�c dis-

tributions described above.
�queue = queueing time at the runway.
Note that this model will slightly overestimate the

taxi-out time when N is large, because it does not
take into account the fact that as the runway queue
grows, the travel time �travel to reach it decreases.

2.2.3 Departure runway service process

The dynamics of runway systems have been the

object of numerous studies and publications [8][9].
However, discrete event departure runway models
which consider each take-o� individually remain dif-
�cult to identify and validate. Indeed, while there
are some data available on the output of the run-
way system (e.g. ASQP take-o� times), there are
few or no objective and statistically signi�cant data
available on its inputs:

� times at which aircraft join a runway queue

� runway crossings by taxiing or landing aircraft

� landings on departure runways

� landings on intersecting runways

� take-o� of turboprop aircraft

Thus an analysis of inter-departure times cannot
precisely distinguish whether a longer than average
service time is due to a momentarily empty runway
queue or to a server absence (such as a landing or
runway crossing).
The analysis of ASQP take-o� data is further com-

plicated by the poor time resolution of the dataset
(the one minute time increments are comparable to
typical runway service times).
The approach that is taken in this study is to

identify periods of time when the runway queue was
unlikely to be empty, and to consider that the his-
togram of take-o� rates over these periods of time

is a good approximation of the theoretical depar-
ture runway service rate distribution. This approach
would be easy to implement if the runway queue
length RQ(t) could be directly observed. But since
no runway queue length data are currently available,
the number N(t) of departing aircraft on the taxi-
way system is used instead. It will be shown that
the value of N(t) is indeed a good predictor of the
departure runway loading over some period of time
after t.

De�ne �Tn(t) to be the \moving average" of take-
o� rate, i.e. the average of take-o� rate over the time
periods (t� n; :::; t; :::; t+ n). A normalized correla-
tion plot of N(t) and �T5(t) under con�guration 8 is
shown on �gure 4 (i.e. �gure 4 shows the value of
kN(t)� �T5(t+dt)k
kN(t)k�k �T5(t+dt)k

as a function of dt)
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Figure 4: Con�guration 8: N(t) is well correlated
with �T5(t+ 6)

The maximum correlation occurs for dt = 6, i.e.
between N(t) and �T5(t + 6). This means that N(t)
predicts best the number o� take-o� over the time
periods (t + 1; t + 2; :::; t + 11). (Note that this is
consistent with the travel times, which are typically
around 8 to 15 minutes at Boston Logan airport).
Figure 5 presents histograms of �T5(t + 6) for di�er-
ent values of N(t) for con�guration 8 in 1996 (depar-
tures on runways 9-4L-4R and landings on runways
4R-4L). This is a high capacity, good-weather con-
�guration that is used often throughout the year at
Boston Logan. It accounted for 24.4% of all push-
backs in 1996.
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Figure 5: Evolution of �T5(t+6) as N(t) varies (con-
�guration 8)

As N increases, the take-o� rate increases at �rst,
and then saturates forN � 8. This phenomenon had
been described in an aggregate manner (i.e. con-
sidering all the runway con�gurations together) by

Shumsky [4][5].
The departure runway system model used in this

paper is shown on �gure 6.

Figure 6: Probability mass function of the depar-
ture capacity of the runway system model over one
minute

It is based on the server absence concept. For
each time period, there is a probability p that the
runway system is not available for take-o�. If the
runway system is available however, its capacity is
c aircraft over one time period (i.e. one minute).
Paragraph 2.2.4 will demonstrate that even such a
simple model of a complex multi-runway system can
reproduce quite precisely the dynamics of the depar-
ture process .
Note that in this model during each time period

the runway capacity is the result of a Bernouilli

trial[10] (with success if the runway system is avail-
able for take-o�).

Hence the departure capacity �Tn(t) over the (2n+
1) time periods (t� n; :::; t; :::; t+ n) follows the bi-
nomial distribution: for 0 � k � 2n+ 1 ,

Pr

�
�Tn(t) =

kc

(2n+ 1)

�
=

�
2n+ 1
k

�
�(1�p)kp(2n+1)�k

(6)
The parameters p and c are chosen, for each con-

�guration, so that the probability distribution in (6)
matches the observed histograms of �T5(t+6) for high
N(t): For example, for con�guration 8 table 1 shows
that the values p = 0:5 and c = 0:9 give a good
match.

Actual Model
Mean Std.Dev. Mean Std.Dev.
0.48 0.14 0.45 .15

Table 1: Actual and model values of �T5(t+6) for high
N(t) under con�guration 8 ( p = 0:5 and c = 0:9)

2.2.4 Comparison of model output with
historical data

A computer simulation of the model described above
was used to compare key model outputs with ASQP
historical data. Each computer simulation run cov-
ers all the time periods in 1996 when the selected
con�guration was used.
Since the model will be used to evaluate queueing

delays and test methods to reduce these delays, it
should provide good estimates of:

� how many aircraft are waiting in runway queues
(i.e. RQ(t))

� how long these aircraft wait in runway queues
(i.e. �queue)

Since these values are not directly captured in the
ASQP data, the model is evaluated instead on how
well it predicts:

� how many aircraft are on the taxiway system
when ights push back (i.e. NPB)

� how long taxi-out times � are, for various values
of NPB
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2.2.4.a High-capacity con�guration

Figures 7, 8, 9 and table 2 show comparison re-
sults for con�guration number 8 (departures on run-
ways 9 and 4R, arrivals on runways 4R and 4L). This
con�guration was in use for about 88200 minutes in
1996 (i.e. about 1470 hours), and represented 21500
pushbacks (which represents 24.4% of the total).

� �gure 7 shows the \actual" distribution of NPB

that was observed in the ASQP database over
1996, along with the \simulated" distribution of
NPB averaged over 10 runs of the simulation.
Table 2 presents the �rst two moments of the
observed and simulated distributions.
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Figure 7: Actual and computer simulation model
distributions of NPB in con�guration 8

Actual Simulated
Mean Std.Dev. Mean Std.Dev.
3.88 2.07 3.64 2.00

Table 2: Comparison of actual and simulated NPB

distributions for con�guration 8

� �gure 8 presents the moving average of take-
o� rate �T5(t + 6) as a function of N(t). The
curves represent the mean of the distribution of
�T5(t + 6) for each N(t) , and the vertical bars
extend one standard deviation above and below
the mean. The dashed lines are the observations
from ASQP, while the solid lines are simulation
results. The �t is very good, which means that
the model reproduces very well the relationship
between departures and N:
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Figure 8: Moving average of take-o� rate �T5(t + 6)
as a function of N(t) for con�guration 8

� �gure 9 presents the distribution of � for one
airline over three ranges of NPB : light tra�c
(NPB � 2), medium tra�c (3 � NPB � 7), and
heavy tra�c (NPB � 8)
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Figure 9: Taxi-out times in con�guration 8

As the tra�c increases, the taxi-out time increases
both in mean and in variance (this is a common
occurence in queueing systems). The model provides
good �ts for NPB � 7 but the �t is not as good for
NPB � 8.

For the eight major airlines reported in the ASQP
database at Boston Logan airport, the �rst two mo-
ments of the taxi-out time distributions were com-
puted.
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Almost all of the mean errors were found to be
quite small (well under 10%), but some mean er-
rors were as high as 20%. For airlines with rela-
tively few operations, this could reect a small sam-
ple with little statistical signi�cance. Another ex-
planation is that some airlines are subject to special
constraints which are not included in our model (for
instance, pushback and arrival operations are com-
plex and highly coupled in an area of terminals B

and C called the \horseshoe" [1]). The model tends
to underestimate the standard deviation of the taxi-
out distributions. This reects the simple structure
of the model, which does not fully account for some
secondary factors: rare events (e.g. Ground Delay
Programs), airspace constraints, di�erences in air-
craft types, etc.

2.2.4.b Low-capacity con�guration

Figures 10, 11, 12 and table 3 show comparison
results for con�guration number 9, which is a lower
capacity con�guration (departures on runways 9 and
4R, and arrivals on 4R only). Con�guration 9 was
in use for 21800 minutes in 1996 (i.e. about 360
hours), and represented 3340 pushbacks (which rep-
resents 3.9% of the total). Since it is a low capacity
con�guration, it contributes signi�cantly to runway
queueing and thus noise and pollutant emissions.
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Figure 10: Actual and computer simulation model
distributions of NPB in con�guration 9

Actual Simulated
Mean Std.Dev. Mean Std.Dev.
4.00 2.35 3.85 2.38

Table 3: NPB distributions for con�guration 9

� �gure 10 shows the \actual" distributions of
NPB over 1996 along with the \simulated" dis-
tributions (averaged over 10 simulation runs).
Table 3 presents the �rst two moments of the
actual and simulated distributions.

� �gure 11 presents the moving average of take-
o� rate �T5(t + 6) as a function of N(t). Again
the match is quite good, which means that the
model reproduces very well the relationship be-
tween departures and N:
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Figure 11: Moving average of take-o� rate �T5(t+6)
as a function of N(t) for con�guration 9

� �gure 12 present the distribution of � over three
ranges of NPB .
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Figure 12: Taxi-out times in con�guration 9
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Again, it appears that as NPB increases, the taxi-
out time increases both in mean and in variance.
In this low-capacity con�guration, the variance in
taxi-out time becomes very large for large values of
NPB . Possible explanations include:

� transient queueing: if the demand on the de-
parture runway temporarily exceeds the re-
duced departure capacity, long queues can form
quickly at the runway, causing a large increase
in taxi-out time.

� unmodeled weather-related factors such as
Ground Delay Programs.

For the eight major airlines reported in the ASQP
database at Boston Logan airport, the �rst two
moments of the taxi-out time distributions were
again computed. The mean errors were found to
be slightly larger than in the case of con�guration 8,
mostly because of the increased variability of opera-
tions under low-capacity, bad weather scenarios. In
addition, the samples are about 7 times smaller than
in the case of con�guration 8 (because con�guration
9 is not used as often) which could explain some of
the high mean errors.

2.3 Model validation

Subsections 2.1 and 2.2 described the calibration of
the departure process model based on 1996 ASQP
data. To test the applicability of this calibrated
model to other years, a formal validation was carried
out. The computer simulation was given as input
the 1997 departure demand data, and the resulting
model outputs (distribution of NPB , achieved take-
o� rate, and taxi-out times) were compared with the
corresponding actual distributions computed from
the ASQP data.
In most runway con�gurations the model outputs

still match very closely the actual data. For con�g-
uration 4 (departures and arrivals on runways 22L
and 22R) �gure 13 shows the distribution of NPB

given by the model along with the actual distribu-
tion. Figure 14 shows the achieved take-o� rates as
a function of N , and �gure 15 shows the taxi-out
time distributions.
In some con�gurations however, the model slightly

overestimated the departure capacity (by a factor
of 5% to 10%) and consequently underestimated
surface congestion and delays. This could conceiv-
ably be explained by di�erent weather conditions or
by some changes in operational procedures between
1996 and 1997.
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distributions for con�guration 4 in 1997
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Figure 14: Moving average of take-o� rate �T5(t+6)
as a function of N(t) for con�guration 4 in 1997
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3 Control of the Departure Process

Subsection 3.1 introduces the two major incentives
for reducing runway queueing times:

� reductions in direct operating costs

� reductions in environmental costs.

Subsection 3.2 considers some of the constraints
that must be taken into account in the formulation
of departure process control schemes.
Subsection 3.3 presents the results of the quanti-

tative evaluation of simple departure process control
schemes. This evaluation was conducted using the
model developed in this paper.

3.1 Motivation: Cost of runway
queueing vs gate delays

3.1.1 Direct operating costs

U.S. airlines are required to report Direct Operating
Costs (DOC) data to the Department of Transporta-

tion (\Form 41"[11]). Even though these data can be
a�ected by variability in accounting methods, they
provide reasonable estimates of DOC.
The major components of DOC are fuel costs,

crew costs and maintenance costs. Note that
marginal crew and maintenance costs are di�cult to
estimate because of the complex overhead costs that
are associated with these components of airline oper-
ations. Estimated DOC values are shown on tables
4 and 5 for three di�erent aircraft types: medium
jets (e.g. Boeing 737), large jets (e.g. Boeing 757
and 767) and heavy jets (e.g. DC-10 and Boeing
747). These estimates are based on 1992 and 1995

data [12][13]) and are averaged over all major U.S.
airlines.

$/min. at gate
Jet aircraft type Medium Large Heavy

Fuel 0 0 0
Flight crew 2.5 4.5 6
Maintenance 0 0 0

Total 2.5 4.5 6

Table 4: DOC estimates at the gate

Table 5 shows that the DOC of each minute of
runway queueing time is between $13 and $54 (de-
pending on the aircraft type), while table 4 shows
that the DOC for a minute of delay at the gate is

$/min. in queue
Jet aircraft type Medium Large Heavy

Fuel 2 4 9
Flight crew 6 12 20
Maintenance 5 9 25

Total 13 25 54

Table 5: DOC estimates in runway queue

between $2.5 and $6. Hence a gate holding depar-
ture control scheme which would transform runway
queueing time into gate delays could realize DOC
savings of $10.5 to $48 for each minute of delay,
depending on the aircraft type. Table 6 shows an
estimate of the jet aircraft departure tra�c mix at
Boston Logan (this estimate was obtained from En-
hanced Tra�c Management System (ETMS) data
collected in June 1998). Combining the data in ta-
bles 4, 5 and 6 yields an average cost saving of $ 15.4
for each minute of runway queueing time transferred
to the gates.

Jet aircraft % of Boston
type jet operations

Medium 65
Large 30
Heavy 5

Table 6: Mix of jet aircraft departure operations at
Boston Logan in June 1998 (from ETMS data)

3.1.2 Environmental costs

Airports are sensitive areas in terms of pollu-
tion. The residents of nearby neighborhoods su�er
from noise and pollutants generated by the airport.

Among the pollutants emitted by aircraft are [14]:

- Nitrogen oxides (NOx), which play a role in acid
rains and are precursors of particulate matter (which
reduce visibility) and low-level ozone (a highly reac-
tive gas which is a component of smog and a�ects
human pulmonary and respiratory health).

- Unburnt hydrocarbons (HC), carbon monoxide
(CO) and Particulate Matter (PM), especially at
low engine power settings such as in taxi-out mode.

- Sulfur oxides (SOx), which play a role in acid
rain.

Note that aircraft engine typically contribute 45%
of the combustion pollutants emissions at an airport,
while ground access vehicles contribute another 45%
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and Ground Support Equipment (GSE) and Auxil-
iary Power Unit (APU) usage contribute only 10%.
Hence, there is a strong incentive to reduce aircraft
engine emissions at the airport. A study for the
Washington state Department of Ecology estimated
that departure runway queueing is responsible for
a signi�cant part of aircraft pollutant emissions at
the Seattle-Tacoma airport, and that in particular it
accounts for approximately 20% of NOx emissions,
50% of SOx emissions and 40% of PM emissions.
Table 7 shows engine emission characteristics for

common aircraft and engine types, at the idle power
setting that is typically used during the runway

queueing [15] [16]. This table can be used to es-
timate the environmental cost of jets queueing on
the airport taxiways. The last row shows the aver-
age emissions for one minute of jet aircraft runway
queueing at Boston Logan airport, based on the per-
centage of jet operations own by each aircraft type
(as found in the in the Enhanced Tra�c Manage-
ment System (ETMS) database in June 1998).

Aircraft/engine Emissions (g/min)
HC CO NOx

B-727 / JT8D 74.30 336.73 69.06
DC-9 / JT8D 49.53 224.49 46.04
B-737 / JT8D 49.53 224.49 46.04

B-737 / CFM56-3-B1 31.19 470.59 53.35
MD-80 / JT8D-209 63.01 220.47 54.73
A320 / V2500-A1 3.27 115.47 87.94
B-757 / PW2037 38.24 390.85 74.45
A300 / PW4060 42.43 519.38 125.24

B-767 / CF6-80C2A2 237.69 1043.51 89.59
DC-10 / CF6-50C 843.66 2391.66 139.32

B-747 / CF6-80C2A2 988.85 2803.25 163.30
Average for Boston 82.31 401.26 64.35

Table 7: Jet engine aircraft emissions

3.2 Guiding principles for control
concepts

Many airport surface operations control schemes
have been envisioned, but few have emphasized es-
sential human factors considerations (in particu-
lar, important lessons were drawn from the De-
parture Sequencing Engineering and Development

Model program (DSEDM)[1]). Airport operations
are almost entirely monitored and controlled by hu-
man operators. Workow and workload constraints
should be considered whenever the feasibility of a

new airport control scheme is evaluated. Any ma-
jor change to the airport control procedures would
be di�cult to study in-situ. Indeed controllers are
unlikely to accept any new procedures before they
feel it has been proven that they not only work bet-
ter than the current ones in all circumstances, but
also maintain or improve safety and do not generate
excessive workload or radical changes in controller
roles and training.

For example, control schemes centered on se-
quencing should take into account the fact that air-
craft sequencing might require more real-time obser-
vations of the position of the aircraft on the taxiway
system than are currently captured, and more inter-
ventions of the controllers to ensure the sequence is
realized at the runway threshold (indeed establish-
ing the sequence through pushback clearances alone
is not enough due to large uncertainties in pushback

and taxi times [1]). These additional observations
and interventions entail additional workload for all
airport controllers.

Thus it appears that the only control schemes
which can bring immediate bene�ts are the ones
which don't require changing the airport control sys-
tem extensively but rather help controllers take bet-
ter decisions in their current work process. The
\gate holding" schemes evaluated in subsection 3.3
meet this criterion. They consist in holding selected
aircraft at their gates (before clearing them for push-
back) in order to prevent the development of long
runway queues (a conceptual discussion of gate hold-
ing as a means to reduce runway queueing time ap-

pears in an MIT white paper[17]).

3.3 Quantitative evaluation of depar-
ture process control schemes

A complete evaluation of a \gate holding" control
concept should consider how it would interact with
the current Airport Tower control actions. However
a conservative performance evaluation of such a con-
trol scheme can be obtained if it is implemented as
a simple gate queue immediately downstream from
the Airport Tower controllers (i.e. it is assumed that
Airport Tower control actions remain the same).
Figure 16 presents the resulting \evaluation" model.

Note that since it is assumed that the Airport
Tower control actions are una�ected by the imple-
mentation of the gate queue downstream, C(t) is
still simply the number of actual pushbacks recorded
during period t in the ASQP data.
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Figure 16: Structure of the departure process model
for control scheme evaluation

De�ne:

GQ(t) = the number of aircraft which
have been cleared by the airport
tower controllers at or before
period t but are still being held at
the gate by at the end of period t.

In addition to following the equations (1) through
(3) with the parameters determined in section 2,
the evaluation model follows the gate queue balance
equation:

GQ(t) = GQ(t� 1) + C(t)� P (t) (7)

The number P (t) of aircraft which are released
from the gate queue and push back during period
t is governed by the speci�c gate holding algorithm
that is to be evaluated. Paragraphs 3.3.1 and 3.3.2
present examples of such gate holding algorithms.

3.3.1 Quantitative evaluation of a feedback
gate holding scheme

An easily applicable gate holding scheme can be in-
ferred from the departure dynamics shown on �g-
ure 8 and 11. It appears on these �gures that the
throughput of the runway does not improve much
when N becomes larger than a saturation value Nsat

(e.g. Nsat � 6 in con�guration 9). Indeed N > Nsat

typically corresponds to periods when the runway
queue is not empty and thus when the runway is
operating at maximum capacity. Allowing N to be-
come larger than Nsat results in more aircraft in
queue at the runway with little increase in through-
put. These observations suggest a control scheme in
which aircraft are held at their gates whenever N
exceeds some threshold value Nc. This amounts to
controlling the number of pushbacks P (t) by setting:

P (t) = min( max(Nc(t)�N(t); 0) ; GQ(t�1)+C(t) )
(8)

This control scheme would be easily implemented
by human controllers at an airport like Boston Lo-
gan, since N(t) can be observed in the tower as the

number of ight strips on the ground controller's
rack. It could also be part of a larger scale concep-
tual control architecture as described in some pre-

liminary studies [18][19]. Figure 17 shows the e�ect
of the control scheme for di�erent values of Nc, un-
der con�guration 9. It was obtained through sim-
ulation using the model shown on �gure 16. The
simulation was run for all the time periods of 1996
when con�guration 9 was in e�ect, using the actual
departure demand found in the ASQP database but
implementing the control scheme expressed by (8).
The gate holding delay and runway queueing time of
each ight were recorded. The total gate delay and
runway queueing time over all these ights is shown
on �gure 17.
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Figure 17: E�ect of holding aircraft at the gates
when N � Nc in con�guration 9, using actual 1996
demand data (averaged over 10 simulation runs)

As Nc becomes smaller than Nsat, the runway is
\starved" and the reduction in runway throughput
causes an increase in total delay. But for Nc � Nsat,
this control scheme simply replaces runway queue-
ing time with gate delay with little impact on run-
way throughput. Naturally, gate delay is less costly
than runway queueing time, mostly because the air-
craft engines are not running while the aircraft is
at the gate (see subsection 3.1). The control law
was found to have similar e�ects in other runway
con�gurations. Table 8 presents results obtained for
a set of six runway con�gurations which together
represented 82% of the operations at Boston Logan
airport in 1996. For each con�guration, the value of
Nc was chosen in such a way that the total queueing
time would not increase by more than about 5%.
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The table shows that the control law is most ef-
fective in low capacity con�gurations (i.e. when the
demand would cause the airport to operate at values
of N signi�cantly above the saturation value Nsat if
no control law was applied). The overall reduction in
runway queueing time over these six con�gurations
is 7.1%, and the increase in total queueing time is
only 3.2%. The e�ects on pollutant emissions are :

� 1650 kg reduction in unburnt HC emissions

� 8020 kg reduction in CO emissions

� 1290 kg reduction in NOx emissions

The net savings in Direct Operating Costs can be
computed from tables 4, 5, 6 and 8 and amount to
approximately $280,000. Note that these estimates
apply to 82% of the jet tra�c at the airport. Higher
�gures would be obtained if all the jet tra�c was
taken into account, and if turboprop operations were
included in the model (since they represent as much
as 45% of departure operations in Boston Logan).
Adopting a more aggressive control law (by reducing
Nc) would result in larger reductions in pollutant
emissions, but may result in lower Direct Operating
Cost savings due to the increase in total queueing
time it would introduce.

Note �nally that if all the runway queueing time
occuring in these six runway con�gurations could be
eliminated (as opposed to only 7.1% in the discus-
sion above), the e�ect on pollutant emissions over a
year would be of the order of:

� a 23.4 ton reduction in unburnt HC emissions

� a 114 ton reduction in CO emissions

� a 18.3 ton reduction in NOx emissions

There is therefore a signi�cant incentive to obtain
more data and re�ne departure process modeling
and control laws, in order to realize a larger part
of these potential pollutant emissions reductions.

The gate holding control scheme introduced in
this section could have two major undesirable side
e�ects:

� Gate shortage: some airlines might not have
enough gate capacity at the airport to accom-
modate aircraft being held at the gates by the
control law. This gate shortage would become
more severe for lower values of the control law

parameter Nc, as more and more aircraft would
be held at the gate. However, simulation runs
showed that at Boston Logan in 1996, the values
of Nc used in table 8 would not cause signi�cant
gate shortage for most airlines. The last column
of table 9 shows how much time an airline would
need one additional gate to accommodate all of
its aircraft. Over these six selected con�gura-
tions which cover 82% of the 1996 tra�c, an air-
line would on average run out of gate capacity
and require an additional gate only 144 minutes
over the whole year. It is moreover conceivable
that airlines could slightly modify their gate al-
location procedures to alleviate this shortage.

� On-time performance statistics: the gate hold-
ing controls scheme would a�ect the perceived
on-time performance (by delaying pushbacks)
and the actual on-time performance (by intro-
ducing some departure delay into the system)
of the airlines. Columns 5 and 6 in table 9
show that for these values of the control law pa-
rameter Nc, on average only 2.2% of the push-
backs would be delayed by more than 5 minutes,
so that the impact on airline on-time statistics
would be quite small.

3.3.2 Quantitative evaluation of a predictor-
based gate holding scheme

The control scheme described in paragraph 3.3.1 re-
lies exclusively on the observation of the current
state of the airport (in particular N(t), the num-
ber of departing aircraft on the taxiway system). It
does not take into account future departure demand,
or the future evolution of the runway departure ca-
pacity (e.g. due to predictable changes in the arrival
rate). A control scheme which would use estimates
of future departure demand and runway capacity in
addition to the current state of the airport should
result in an additional reduction in runway queueing
times.

Subparagraphs 3.3.2.a and 3.3.2.b consider the
availability of data on future departure demand and
runway capacity. Subparagraph 3.3.2.c presents a
control scheme architecture, based on departure slot
allocation, which would take advantage of these
data. Subparagraph 3.3.2.d presents initial results
obtained by applying a simple departure slot alloca-
tion algorithm to Boston Logan.
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Conf. Departure % of 1996 Runway Runway % reduction % increase
number runways pushbacks queueing queueing Nsat Nc in runway in total

(min.) per ight queueing queueing
1 33L 1.5 12,631 9.8 5 6 - 42.1 2.1
2 27-33L 15.7 45,648 3.4 9 9 - 4.4 0.0
4 22R-22L 5.3 19,945 4.4 8 8 - 7.1 2.8
7 22R-22L 31.3 128,724 4.8 8 9 - 2.8 5.6
8 9-4R-4L 24.4 56,230 2.7 8 8 - 4.6 0.0
9 9-4R 3.9 21,170 6.3 6 6 - 24.6 5.0

Total 82.1 % 284,348 min. 4.0 min. - 7.1 % 3.2 %

Table 8: Results of the control law for selected con�gurations at Boston Logan, using actual 1996 demand
data (values are averaged over 10 simulation runs)

Conf. % of 1996 % ights % ights with gate Time 1 more gate
number pushbacks Nsat Nc with gate hold > 5 min. is needed

hold (min.over 1 year)
1 1.5 5 6 35 22.0 11
2 15.7 9 9 3.5 0.7 11
4 5.3 8 8 8 2.8 8
7 31.3 8 9 7 2.7 73
8 24.4 8 8 3.5 1.9 23
9 3.9 6 6 19 9 18

Total 82.1 % 5.3 % 2.2 % 144 min.

Table 9: Impact of the control law on on-time performance and gate utilization, for selected con�gurations
at Boston Logan, using actual 1996 demand data (values are averaged over 10 simulation runs)
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3.3.2.a Departure demand information

In current operations, the only future departure
demand information available to the FAA Air Traf-
�c Control Tower (ATCT) is the Flight Information
Management System (FIMS) maintained by the air-
lines to inform their passengers of planned departure
times. FIMS is not always accurate since it does not
instantly reect some sources of potential departure
delays:

� late inbound resources (aircraft, crew, ight at-
tendants)

� departure holds to allow passenger connections

� delays in preparing the aircraft for departure
(passenger boarding, baggage and cargo load-
ing, catering, etc.)

� aircraft mechanical problems currently under
investigation (\ights on decision")

It is however a good indication of future demand
on a short time scale.
It can be envisioned that more departure demand

information will become available in the future. In-
deed, since the early days of the FAA - Airlines Data
Exchange (FADE) program, signi�cant progress has
been made in the de�nition and implementation of
Collaborative Decision-Making (CDM) procedures,
which allow the airlines and the FAA to exchange
more accurate information on future departure de-
mand in the context of Ground Delay Programs
(GDP). Departure demand could then be predicted
more accurately on longer time scales.

3.3.2.b Runway capacity information

The departure capacity of a runway system can
be directly a�ected by many factors, including:
- weather conditions
- departure airspace constraints
- arrivals
The weather conditions can usually be forecasted

with satisfying accuracy 30 minutes in the future
(except in drifting fog conditions). Airspace con-
straints also vary slowly and are quite predictable.
In current operations, the future arrivals at an

airport are not known with good accuracy, due to
uncertainties in the timing of aircraft descent pro-
�les and approach paths. However, the new Center-
TRACON Automation System (CTAS) has been

shown to improve signi�cantly the accuracy of ar-

rival time predictions [20][21]. It appears possible to
predict future arrivals up to 15 minutes in advance
with an accuracy of 30 seconds.

3.3.2.c Slot allocation architecture

The concept of landing slot allocation is used
extensively at major congested airports such as
Chicago O'Hare and London Heathrow, and at
smaller airports in case of Ground Delay Programs.
The same concept can be applied to departure oper-
ations. However, a strict application of the concept
would require airport tower controllers to actively
control taxiing aircraft to ensure that they arrive in
the correct order and at the correct times to com-
ply with the slot allocation. This would make the
testing and implementation of the concept di�cult
and costly. In order to minimize disruptions to the
current controller work processes, the slot alloca-
tion process could be limited to determining opti-
mal pushback times. Aircraft would be held at the
gate until a desired pushback time which should take
them to the runway in time for their take-o� slot.
After pushback, controllers would not be required
to ensure that aircraft are exactly complying with
the slot allocation. The price to pay for this sim-
plicity is an increased vulnerability to uncertainties
in taxi times.

De�ne H to be the time horizon for predictions
and slot allocations. Based on subparagraphs 3.3.2.a
and 3.3.2.b, a reasonable value for H would be 20
minutes. A simple departure slot control architec-
ture could be used to implement the concept:

� Step 1a. Prediction of departure runway ca-
pacity: the future departure runway capacity
is predicted over (t; t + H) taking into account
weather, airspace constraints, arrivals, etc. as
outlined in subparagraph 3.3.2.a.

� Step 1b. Prediction of runway arrival times:
the times at which currently taxiing aircraft will
arrive at the runway are estimated, and the
remaining departure runway capacity is com-
puted.

� Step 1c. Prediction of departure demand: based
on the published schedule and updates from the
airline control centers, a \departure pool" con-
sisting of the aircraft which will request a de-
parture over (t; t+H) is estimated.
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� Step 2. Take-o� slot allocation: an algorithm
allocates the available departure runway capac-
ity to aircraft in the departure pool. The algo-
rithm should try to minimize runway queueing
times while respecting some key constraints (e.g.
in general, an aircraft cannot leave its gate be-
fore its published departure time) and fairness
rules (e.g. �rst come �rst served).

� Step 3. Selection of pushback times: a pushback
time is selected for each aircraft in the depar-
ture pool which has been assigned a slot, taking
into account the time it will take for the air-
craft to reach the runway under current airport
conditions.

Notes:

� the slot allocation algorithm should take into
account the uncertainty arising in the runway
departure capacity and demand predictions.

� the selected pushback times should also take
into account the uncertainty in the travel time
to the runway.

� the control points in the departure process are

currently the object of detailed studies[19].

3.3.2.d Slot allocation algorithm

Many algorithms (or combinations thereof) can
be used to optimize the slot allocation process, in-
cluding:
- Heuristics
- Mathematical programming
- Dynamic programming (DP) or approximate DP
A simple heuristic was used to obtain a conserva-

tive estimate of potential bene�ts of the departure
slot allocation concept. This heuristic is an imple-
mentation of the architecture described in subpara-
graph 3.3.2.c.

� Step 1a: the predicted departure runway capac-
ity is taken to be constant over (t; t + H) and
equal to the average capacity observed in this
con�guration under high taxiway loading (e.g
under con�guration 9, �gure 11 shows that the
average departure capacity under high taxiway
loading is around 0.35 aircraft/minute).

� Step 1b: the runway arrival time of each taxiing
aircraft is estimated by adding to its pushback
time the average travel time for its airline in
this particular runway con�guration (see para-
graph 2.2.2).

� Step 1c: future departure requests are assumed
to be known exactly over (t; t+H).

� Step 2. The slot allocation algorithm spreads
the departure demand to ensure that the pre-
dicted runway queue over (t; t + H) does not
exceed a target runway bu�er RQc. Slots are
allocated according to the following variation of
the �rst come �rst served rule: out of all the
aircraft in the departure pool which could be as-
signed to a take-o� slot, the aircraft that is ac-
tually assigned is the one with the earliest de-
parture request time.

In initial computer simulation tests, the heuristic
departure slot allocation algorithm described above
did not perform as well as the simple state-feedback
gate holding scheme introduced in paragraph 3.3.1.
The relatively poor performance of the predictor-

based algorithm can be attributed to the large uncer-
tainties in travel times and departure capacity. The
introduction of additional airport operations data
into the model (such as arrivals and turboprop op-
erations) should reduce these uncertainties and im-
prove the performance of slot allocation algorithms.

Conclusion

In this paper, we have considered the problem of
modeling the departure process at a busy airport for
the purpose of alleviating surface congestion. Our
experimental investigation has allowed us to pro-
vide a simple, yet extensively validated dynamical
queueing model of the departure process. Prelimi-
nary investigations show that active control strate-
gies on this model can reduce congestion on the
airport surface using aircraft gate holding. These
strategies allow a reduction in direct operating costs
and environmental costs without increasing total de-
lay signi�cantly. Their implementation would be
compatible with the current airport operations and
human control structure. Further research will com-
bine aircraft departure control with arrivals control,
with the intent to improve the overall airport e�-
ciency. Further e�ciency will also be gained by re-
ducing model uncertainties and investigating more
advanced control laws.
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